Graph Search

CPSC 322 - Search 2

Textbook §3.4

CPSC 322 - Search 2, Slide 1

Ξ.

< 口 > < 回 > < 回 > < 回 > < 回 > <

Lecture Overview

2 Graph Search

æ

→ 御 → → 注 → → 注 →

State Spaces

- Idea: sometimes it doesn't matter what sequence of observations brought the world to a particular configuration; it just matters how the world is arranged now.
 - called the Markov assumption
- Represent the different configurations in which the world can be arranged as different states
 - which numbers are written in cells of the Sudoku and which are blank?
 - which numbers appear in which slots of the 8-puzzle?
 - where is the delivery robot?
- States are assignments of values to one or more variables
 - a single variable called "state"
 - x and y coordinates; etc...
- From each state, one or more actions may be available, which would move the world into a new state
 - write a new number in a blank cell of the Sudoku
 - slide a tile in the 8-puzzle
 - move the delivery robot to an adjacent location

Agent Design

- An agent can be thought of as a mapping from the given state to the new action that the agent will take
- However, there's a problem... often, we don't understand the domain well enough to build the mapping
 - we'd need to be able to tell the agent how it should behave in every state
 - that's why we want intelligent agents: they should decide how to act for themselves
 - in order for them to do so, we need to give them goals

▲□ ▶ ▲ □ ▶ ▲ □ ▶ - □ □

State Spaces

- Represent the different configurations in which the world can be arranged as different states
 - which numbers are written in cells of the Sudoku and which are blank?
 - which numbers appear in which slots of the 8-puzzle?
 - where is the delivery robot?
- States are assignments of values to one or more variables
- From each state, one or more actions may be available, which would move the world into a new state
 - write a new number in a blank cell of the Sudoku
 - slide a tile in the 8-puzzle
 - move the delivery robot to an adjacent location
- Some states are goal states
 - A Sudoku state in which all numbers are different in each box, row and column
 - The single 8-puzzle state pictured earlier
 - The state in which the delivery robot is located in room 123

Lecture Overview

æ

→ 御 → → 注 → → 注 →

Graph Search

Search

- What we want to be able to do:
 - find a solution when we are not given an algorithm to solve a problem, but only a specification of what a solution looks like
 - idea: search for a solution

Definition (search problem)

- A search problem is defined by
 - A set of states
 - A start state
 - A goal state or goal test
 - a boolean function which tells us whether a given state is a goal state
 - A successor function
 - a mapping from a state to a set of new states

э

・回 と く ヨ と く ヨ と

Abstract Definition

How to search

- Start at the start state
- Consider the different states that could be encountered by moving from a state that has been previously expanded
- Stop when a goal state is encountered

To make this more formal, we'll need to talk about graphs...

Search Graphs

Definition (graph)

A graph consists of

- a set N of nodes;
- \bullet a set A of ordered pairs of nodes, called arcs or edges.
- Node n₂ is a neighbor of n₁ if there is an arc from n₁ to n₂.
 i.e., if ⟨n₁, n₂⟩ ∈ A

Definition (path)

A path is a sequence of nodes $\langle n_0, n_1, \ldots, n_k \rangle$ such that $\langle n_{i-1}, n_i \rangle \in A$.

Definition (solution)

Given a start node and a set of goal nodes, a solution is a path from the start node to a goal node.

Example Domain for the Delivery Robot

The agent starts outside room 103, and wants to end up inside room 123.

CPSC 322 - Search 2. Slide 10

æ

Graph Search

Example Graph for the Delivery Robot

æ

3		5				6	
6				2		3	
2			5				
4	3		1		2	5	
	5	8		6		1	4
				8			1
	4		3				5
	6				9		8

Let's define this as a search problem. What are:

• the set of states?

프 🖌 🛪 프 🕨

3		5				6	
6				2		3	
2			5				
4	3		1		2	5	
	5	8		6		1	4
				8			1
	4		3				5
	6				9		8

Let's define this as a search problem. What are:

- the set of states?
- the start state?

3		5				6	
6				2		3	
2			5				
4	3		1		2	5	
	5	8		6		1	4
				8			1
	4		3				5
	6				9		8

Let's define this as a search problem. What are:

- the set of states?
- the start state?
- the goal state or goal test?

3		5				6	
6				2		3	
2			5				
4	3		1		2	5	
	5	8		6		1	4
				8			1
	4		3				5
	6				9		8

Let's define this as a search problem. What are:

- the set of states?
- the start state?
- the goal state or goal test?
- the successor function?

3		5				6	
6				2		3	
2			5				
4	3		1		2	5	
	5	8		6		1	4
				8			1
	4		3				5
	6				9		8

Let's define this as a search problem. What are:

- the set of states?
- the start state?
- the goal state or goal test?
- the successor function?

Note: here only the goal matters, not the path to it.

Graph Searching

- Generic search algorithm: given a graph, start nodes, and goal nodes, incrementally explore paths from the start nodes.
- Maintain a frontier of paths from the start node that have been explored.
- As search proceeds, the frontier expands into the unexplored nodes until a goal node is encountered.

3 × 4 3 ×

Problem Solving by Graph Searching

-

Graph Searching

- Generic search algorithm: given a graph, start nodes, and goal nodes, incrementally explore paths from the start nodes.
- Maintain a frontier of paths from the start node that have been explored.
- As search proceeds, the frontier expands into the unexplored nodes until a goal node is encountered.
- The way in which the frontier is expanded defines the search strategy.

Lecture Overview

2 Graph Search

æ

∃ ► < ∃ ►</p>

< 🗗

Graph Search Algorithm

```
Input: a graph,

a set of start nodes,

Boolean procedure goal(n) that tests if n is a goal node.

frontier := {\langle s \rangle : s is a start node};

while frontier is not empty:

select and remove path \langle n_0, \dots, n_k \rangle from frontier;

if goal(n_k)

return \langle n_0, \dots, n_k \rangle;

for every neighbor n of n_k

add \langle n_0, \dots, n_k, n \rangle to frontier;

end while
```

- After the algorithm returns, it can be asked for more answers and the procedure continues.
- Which value is selected from the frontier defines the search strategy.
- The *neighbor* relationship defines the graph.
- The goal function defines what is a solution.

イロン イボン イヨン イヨン 三日

Branching Factor

Definition (forward branching factor)

The forward branching factor of a node is the number of arcs going out of that node.

• If the forward branching factor of every node is *b* and the graph is a tree, how many nodes are exactly *n* steps away from the start node?

伺 ト イヨト イヨト

Branching Factor

Definition (forward branching factor)

The forward branching factor of a node is the number of arcs going out of that node.

- If the forward branching factor of every node is *b* and the graph is a tree, how many nodes are exactly *n* steps away from the start node?
 - b^n nodes.
- We'll assume that all branching factors are finite.

・同・ ・ヨ・ ・ヨ・

Comparing Algorithms

Definition (complete)

A search algorithm is complete if, whenever at least one solution exists, the algorithm is guaranteed to find a solution within a finite amount of time

Definition (time complexity)

The time complexity of a search algorithm is an expression for the worst-case amount of time it will take to run, expressed in terms of the maximum path length m and the maximum branching factor b.

Definition (space complexity)

The space complexity of a search algorithm is an expression for the worst-case amount of memory that the algorithm will use, expressed in terms of m and b.